Министерство образования и науки Российской Федерации **Крымский федеральный университет имени В.И. Вернадского**

«Утверждаю»	
Проректор по учебной и	
методической деятельности	
В. О. Курьянов	
« » 2014 года	

ПРОГРАММА

вступительного испытания по профессионально-ориентированным дисциплинам для поступления по образовательной программе высшего образования «бакалавриата» на базе СПО направления подготовки 27.03.03 «Системный анализ и управление»

Составители: Степанов А.В., доктор технических наук, доцент,

СОДЕРЖАНИЕ

ЦЕЛЬ И ЗАДАЧИ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ	4
СТРУКТУРА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ	4
ПЕРЕЧЕНЬ ТЕМ, КОТОРЫЕ ВЫНОСЯТСЯ НА ВСТУПИТЕЛЬНЫЕ	
ИСПЫТАНИЯ	4
Математика	4
Информатика	7
Математическая логика и теория алгоритмов	8
Теория и технологии программирования	10

ЦЕЛЬ И ЗАДАЧИ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

Целью проведения вступительного испытания является установление уровня подготовки поступающего на бакалавриат к учебной работе и соответствие его подготовки требованиям государственного образовательного стандарта высшего образования по направлению 27.03.03 «Системный анализ и управление»

СТРУКТУРА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

Содержание программы вступительного испытания определяет общие требования к знаниям лиц с высшим образованием, поступающим на бакалавриат по направлению 27.03.03 «Системный анализ и управление».

Программа включает основные дидактические единицы по таким основным лисциплинам:

- Математика (линейная алгебра и аналитическая геометрия);
- Математика (математический анализ);
- Информатика
- Математическая логика и теория алгоритмов
- Теория и технологии программирования (на базе языков высокого уровня)

Вступительные испытания представляют собой письменную оценку знаний студентов при помощи тестовых технологий. Все тестовые задания относятся к закрытому типу с выбором одного правильного ответа из четырех вариантов. Билет вступительного испытания представляет собой 100 тестовых заданий. Все билеты имеют одинаковые тестовые задания с возможной разницей в порядке тестовых заданий и порядка ответов в них.

Продолжительность тестирования – два часа.

Критерии оценивания тестовых заданий: 1 балл, если указан правильный ответ; 0 баллов, если указан неправильный ответ, или указано более одного ответа, или ответ не предоставлен. Максимальное количество баллов, которое можно набрать, правильно выполнив все тестовые задания - 100 баллов.

ПЕРЕЧЕНЬ ТЕМ, КОТОРЫЕ ВЫНОСЯТСЯ НА ВСТУПИТЕЛЬНЫЕ ИСПЫТАНИЯ

Математика

Линейная алгебра и аналитическая геометрия

- 1. Декартовые прямоугольные системы координат на плоскости и в пространстве. Линейные преобразования. Аффинные и ортогональные преобразования, их свойства.
- 2. Уравнений линий на плоскости и в пространстве. Общее уравнение прямой на плоскости. Неполные уравнения прямой. Виды уравнений прямой (нормальное, каноническое, в отрезках, параметрическое, с угловым коэффициентом). Уравнение прямой, проходящей через две различные точки.
- 3. Условия параллельности и перпендикулярности двух прямых. Угол между двумя прямыми. Расстояние от точки до прямой.

- 4. Общее уравнение плоскости в пространстве. Неполные уравнения плоскости, уравнение плоскости в отрезках. Условия параллельности и перпендикулярности двух плоскостей. Угол между двумя плоскостями.
- 5. Уравнение плоскости, проходящей через три различные точки, не лежащие на одной прямой.
- 6. Нормальное уравнения плоскости. Расстояние от точки до плоскости.
- 7. Прямая линия в пространстве. Каноническое уравнение прямой в пространстве, уравнение проходящей через две различные точки.
- 8. Линии второго порядка на плоскости. Эллипс, гипербола, парабола. Нахождение их канонических уравнений. Их оси симметрии. Асимптоты гиперболы. Подобие парабол. Касательная прямая к эллипсу.
- 9. Инварианты I1,I2,I3 уравнений линий второго порядка. Тип кривой в зависимости от знака I2.
- 10. Поверхности второго порядка. Общее уравнение поверхности. Центр поверхности второго порядка. Уравнения центра. Центральные поверхности.
- 11. Стандартное упрощение уравнений поверхностей второго порядка.
- 12.Классификация центральных поверхностей второго порядка: эллипсоиды, гиперболоиды (одно- и дву-полостные), конусы, их канонические уравнения.
- 13. Нецентральные поверхности второго прядка: пары плоскостей, цилиндры (эллиптические и гиперболические), параболоиды (эллиптические и гиперболические), их канонические уравнения.
- 14. Алгоритм приведения общего уравнения поверхности к каноническому виду: характеристический многочлен, характеристическое уравнение, корни характеристического уравнения, ортогональное преобразование декартовой системы координат, позволяющее получить стандартное упрощение уравнения поверхности второго порядка.

Математический анализ

- 1. ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. Существование предела монотонной последовательности. Сходимость по критерию Коши. Подпоследовательности, нахождение частичных пределов.
- 2. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. Нахождение предела функции. Порядок малости и порядок роста функции. Непрерывность и точки разрыва. Исследование на равномерную непрерывность.
- 3. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ. Нахождение производной сложной функции. Дифференциал, приближенные вычисления. Раскрытие неопределенностей. Формула Тейлора. Исследование функции. Неопределенный интеграл.
- 4. ИНТЕГРАЛ РИМАНА. Интеграл с переменным верхним пределом. Замена переменной в определенном интеграле. Приложения интеграла.
- 5. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Предел, непрерывность.
- 6. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Исследование функции на дифференцируемость. Формула

- Тейлора. Дифференцирование неявных функций. Исследование на экстремум, условный экстремум. Нахождение наибольших, наименьших значений функции.
- 7. ЧИСЛОВЫЕ РЯДЫ. Исследование сходимости положительных рядов. Исследование абсолютной и условной сходимости.
- 8. ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ. Исследование равномерной сходимости функциональной последовательности. Нахождение области сходимости функционального ряда. Равномерная сходимость функционального ряда и свойства суммы.
- 9. СТЕПЕННЫЕ РЯДЫ. Нахождение радиуса сходимости, области сходимости. Разложение функции в степенной ряд.
- 10.НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Исследование сходимости и вычисление несобственных интегралов.
- 11. КРАТНЫЕ ИНТЕГРАЛЫ. Вычисление двойных и тройных интегралов. Замена переменных. Вычисление площадей и объемов.
- 12. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ. Вычисление криволинейных интегралов 1-го рода. Вычисление криволинейных интегралов 2-го рода. Формула Грина.
- 13.РЯДЫ ФУРЬЕ. Разложение функций в ряд Фурье.
- 14.ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ **УРАВНЕНИЯ** И ИХ СИСТЕМЫ. Понятие обыкновенного дифференциального уравнения и его решения. Интегральная кривая. Уравнения с разделяющимися переменными, однородные уравнения, уравнения В дифференциалах, полных интегрирующий множитель, линейное уравнение, уравнение Бернулли. Теорема существования и единственности решения задачи Коши для Теорема существования и единственности уравнения первого порядка. задачи Коши для нормальной системы уравнений. Теорема существования и единственности решения задачи Коши для уравнения высокого порядка. Линейные однородные системы уравнений с постоянными коэффициентами. Построение общего решения. Линейные переменными коэффициентами.

Список рекомендуемой литературы

- 1. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. М.: ФИЗМАТЛИТ, 2000.
- 2. Беклемишева Л.А., Петрович А.Ю., Чубаров И.А. Сборник задач по аналитической геометрии и линейной алгебре. М.: Наука, 2001. 496 с.
- 3. Берман Г.Н. Сборник задач по курсу математического анализа. М. Наука, 1972, 1975, 1977, 1985 гг. 416 с.
- 4. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. М. Наука, 1980,1984,1988 гг. -432 с.
- 5. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. М. Наука, 1981,1985,1988,1989 гг. -448 с.

- 6. Задачи и упражнения по математическому анализу (Под ред. Демидовича Б.П.) М. Наука, 1972, 1978, 1990 гг. 479 с
- 7. Кудрявцев Л.Д. Курс математического анализа (в 3-х томах).- М. Наука, 1970, 1981, 1988 гг. 1639 с.
- 8. Никольский С.М. Курс математического анализа (в 2-х томах).- М. Наука, 1975, 1983, 1990 гг. 822 с.
- 9. Пискунов Н.С. Дифференциальное и интегральное исчисление (в 2-х томах) М. Наука, Математический анализ:1967, 1978, 1985, 1986 гг. 1031 с. 2710 экз.

Информатика

- 1. ИНФОРМАЦИЯ И ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ. Вещество, энергия, информация основные понятия науки. Информационные процессы в живой природе, обществе и технике: получение, передача, преобразование и использование информации. Информационные процессы в управлении. Язык как способ представления информации. Кодирование. Двоичная форма представления информации. Вероятностный подход к определению количества информации. Единицы измерения информации.
- 2. СИСТЕМЫ СЧИСЛЕНИЯ И ОСНОВЫ ЛОГИКИ. Системы счисления. Двоичная система счисления. Двоичная арифметика. Системы счисления, используемые в компьютере. Основные понятия и операции формальной логики. Логические выражения и их преобразование. Построение таблиц истинности логических выражений. Логические схемы основных устройств компьютера (сумматор, регистр).
- 3. КОМПЬЮТЕР. Основные устройства компьютера, функции Магистралъно модульный принцип взаимосвязь. построения компьютера. Программное обеспечение компьютера. Системное прикладное программное обеспечение. Операционная система: назначение и основные функции. Файлы и каталоги. Работа с носителями информации. Ввод и вывод данных.
- 4. МОДЕЛИРОВАНИЕ И ФОРМАЛИЗАЦИЯ. Моделирование как метод познания. Материальные и информационные модели. Основные типы моделей данных (табличные, иерархические, сетевые). Формализация. Математические модели. Логические модели. Построение и исследование на компьютере информационных моделей из различных предметных областей.
- 5. АЛГОРИТМИЗАЦИЯ И ПРОГРАММИРОВАНИЕ. Понятие алгоритма, свойства алгоритмов. Исполнители алгоритмов, система команд исполнителя. Способы записей алгоритмов. Формальное исполнение алгоритмов. Основные алгоритмические конструкции. Вспомогательные алгоритмы. Разработка программ методом последовательной детализации (сверху вниз) и сборочным методом (снизу вверх).
- 6. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ. Технология обработки текстовой информации Текстовый редактор: назначение и основные возможности.

Основные объекты в текстовом редакторе и операции над ними (символ, абзац, страница). Редактирование и форматирование текста. Технология обработки графической информации. Графический редактор: назначение и основные возможности. Способы представления графической информации (растровый и векторный). Пиксель. Способы хранения графической информации и форматы графических файлов. Основные объекты в графическом редакторе и операции над ними (линия, окружность, прямоугольник).

- 7. ТЕХНОЛОГИИ ОБРАБОТКИ ЧИСЛОВОЙ ИНФОРМАЦИИ. Электронные таблицы: назначение и основные возможности. Редактирование структуры таблицы. Абсолютная и относительная адресация ячеек. Ввод чисел, формул и текста. Стандартные функции. Использование электронных таблиц для решения задач.
- 8. ТЕХНОЛОГИИ ХРАНЕНИЯ, ПОИСКА И СОРТИРОВКИ ИНФОРМАЦИИ. Различные типы баз данных. Реляционные (табличные) базы данных. Системы управления базами данных (СУБД). Ввод и редактирование записей. Сортировка и поиск записей. Основные объекты в базах данных и операции над ними (запись, поле). Изменение структуры базы данных. Виды и способы организации запросов.
- 9. КОМПЬЮТЕРНЫЕ КОММУНИКАЦИИ. Локальные и глобальные компьютерные информационные сети. Основные информационные ресурсы: электронная почта, телеконференции, файловые архивы. Гипертекст. Интернет. Технология World Wide Web (WWW). Публикации в WWW. Поиск информации.

Список рекомендуемой литературы

- 1. Власов В.К., Королев Л.Н. Элементы информатики / Под. Ред. Л.Н. Королева. М.: Наука, 2008 г.
- 2. Информатика / Под ред. Н.В. Макаровой. М.: Финансы и статистика, 2007. 768 с.
- 3. Кураков Л.П., Лебедев Е.К. Информатика. М.: Вуз и школа, 2009. 636с.
- 4. Могилев и др. Информатика: Учебное пособие для вузов / А.В. Могилев, Н.И. Пак, Е.К. Хеннер; Под ред. Е.К. Хеннера. М.: Изд. центр "Академия", 2008
- 5. Острейковский В.А. Информатика. М.: Высшая школа, 2007.- 512с.
- 6. Першиков В.И., Савинков В.М. Толковый словарь по информатике. 2-е изд. Доп. М.: Финансы и статистика, 2008.
- 7. Фигурнов В.Э. ІВМ РС для пользователей. М.: 2007.
- 8. Якубайтис Э.А. Информационные сети и системы: Справочная книга. М.: Финансы и статистика, 2008

Математическая логика и теория алгоритмов

1. ИСЧИСЛЕНИЕ ВЫСКАЗЫВАНИЙ. Исчисление высказываний. Алфавит, формулы, секвенции. Схемы аксиом и правил вывода. Доказательство. Примеры доказуемых секвенций. Теорема об эквивалентности линейного

доказательства и доказательства в виде дерева. Эквивалентность формул. Булевы эквивалентности. Теорема о доказуемости булевых эквивалентностей. Теорема о замене. Нормальные формы. Теорема о существовании эквивалентных ДНФ и КНФ для каждой формулы. Полнота. Теорема о полноте. Непротиворечивость. Теорема о непротиворечивости. Логика предикатов. Алгебраические системы. Язык логики предикатов. Формулы и термы. Гомоморфизмы и их различные частные случаи. Теорема о сохранении значений термов при гомоморфизмах. Истинность формулы в системе на состоянии. Теорема о сохранении значений формул при изоморфизмах. Базы данных. Описание свойств баз данных на языке логики предикатов. Подсистемы. Теорема о подсистеме, порождённой множеством.

- 2. СЛОЖНОСТЬ АЛГОРИТМОВ. Нумерация машин Тьюринга. Теорема о номере следующего слова Поста. Теорема о рекурсивности функций, вычислимых на машинах Тьюринга. Многоленточные машины Тьюринга. Базы данных как входы. Сигнализирующие функции. Классы сложности. Теоремы о зависимости сигнализирующих от числа символов алфавита и Вычисления В полиномиальное время. Полиномиальная вычислимость запросов, формулируемых на языке логики предикатов первого порядка. Полиномиальная сводимость. Теоремы о замкнутости РТІМЕ и NPTIME относительно полиномиальной сводимости. NP-полные проблемы. Теоремы об NP-полных проблемах. NP-полнота SAT. Машины Тьюринга со Первая теорема Кука 0 связи временной емкостной сигнализирующих.
- 3. МАШИНЫ ТЬЮРИНГА. Машины Тьюринга со стеком. Вторая теорема Кука о связи временной и емкостной сигнализирующих. Неразрешимость проблемы равенства в теории полугрупп. Неразрешимость проблемы остановки для машин Тьюринга. Теорема о существование частично рекурсивной функции с нерекурсивной областью определения. Полусистемы Туэ. Построение полусистемы Туэ по машине Тьюринга. Ассоциативные исчисления. Построение ассоциативного исчисления по машине Тьюринга. Теорема о выводимости заключительного слова Поста. Неразрешимость проблемы равенства в теории полугрупп.
- 4. НЕРАЗРЕШИМОСТЬ ЛОГИКИ ПРЕДИКАТОВ. Неразрешимость логики предикатов на конечных моделях. Теорема о нерекурсивности множества номеров зацикливающихся машин. Построение формулы по машине Тьюринга. Существование конечной модели и существование периодической модели в арифметике. Неразрешимость логики предикатов на конечных моделях.
- 5. ПРЕДСТАВЛЕНИЕ РЕКУРСИВНЫХ ФУНКЦИЙ В АРИФМЕТИКЕ. Функция Гёделя. Китайская теорема об остатках. Представление рекурсивных функций в арифметике. Теорема о представимости в арифметике каждой частично рекурсивной функции. Теорема о неразрешимости арифметики.
- 6. НЕПОЛНОТА ЛОГИКИ ПРЕДИКАТОВ. Неполнота логики предикатов для РТІМЕ. Игры Эренфойхта. Неопределимость связности в логике предикатов. Определимость связности в РТІМЕ.

7. МЕТОД РЕЗОЛЮЦИЙ. Метод резолюций в логике высказываний. Самая общая унификация. Метод резолюций в логике предикатов. Машинное доказательство теорем.

Список рекомендуемой литературы

- 1. Судоплатов С.В., Овчинникова Е.В. Математическая логика и теория алгоритмов: Учебник. М.: ИНФРА-М, Новосибирск: НГТУ, 2004.
- 2. Ершов Ю.Л., Палютин Е.А. Математическая логика. СПб.: Лань, 2005.
- 3. Мальцев А.И. Алгоритмы и рекурсивные функции. М.: Наука, 1986.
- 4. Шоломов Л.А. Основы теориии дискретных логических и вычислительных систем. М.: Наука, 1980.
- 5. Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. М.: Мир, 1979.
- 6. Кнут Д. Искусство программирования для ЭВМ. Т. 1-3. М.: Мир, 1978.
- 7. Логическое программирование. М.: Мир, 1988.
- 8. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. М.: ФИЗМАТЛИТ, 2001.

Теория и технологии программирования

- 1. Процесс создания компьютерной программы. Программа: исходная и выполняемая. Компиляция. Этапы создания программы: Алгоритм. Представление алгоритма в виде блок-схемы. Представление алгоритма на языке программирования. Стиль программирования.
- 2. Язык проектирования программ (задач). Интегрированная среда разработки программ С++.
- 3. Ошибки классификация. Ошибки времени разработки. Создание выполняемой программы.
- 4. Память компьютера и понятие переменной. Стандартные типы данных. Объявление переменных.
- 5. Инструкция присваивания. Выражение. Тип и значение выражения. Приведение типов. Ввод, вывод.
- 6. Структурное программирование. Следование. Выбор. Условие. Простое условие. Сложное условие. Циклы. Инструкция FOR. Циклы.
- 7. Массив. Объявление. Доступ к элементу. Ввод и вывод массива. Сортировка массива методом прямого выбора. Сортировка массива методом пузырька. Поиск в массиве. Метод перебора. Поиск в массиве. Бинарный поиск.
- 8. Процедуры и функции. Функция программиста. Формальные и фактические параметры. Процедура программиста. Передача параметров: по ссылке, по значению. Локальные и глобальные переменные. Библиотечные процедуры. Библиотека (модуль) программиста.
- 9. Типы данных программиста: перечисление. Типы данных программиста: интервальный тип. Типы данных программиста: запись.
- 10. Динамические структуры данных. Статические и динамические переменные. Динамические переменные. Выделение и освобождение памяти. Рекурсия. Вычисление факториала. Поиск пути на графе.

- 11. Список: понятие, объявление, добавление элемента.
- 12. Файлы. Запись в файл. Чтение из файла. Ошибки файловых операций.
- 13. Объектно-ориентированное программирование. Объект. Метод. Наследование. Полиморфизм.
- 14. Визуальное проектирование и событийное программирование. Событие. Процедура обработки события. Свойство.
- 15. RAD средства разработки ПО.
- 16. Технология .NET и платформа Microsoft .NED Framework

Список рекомендуемой литературы

- 1. Иванова Г.С. Технология программирования: Учебник для вузов. 3-е изд., стереотип. М.: Издательство МГТУ им. Н.Э Баумана, 2006. 336 с
- 2. Мартынов Н.Н. Программирование для Windows на C/C++. Том 1. М.: OOO «Бином-Пресс», 2004. 528 с.
- 3. Иванова Г.С., Ничушкина Т.Н., Пугачев Е.К. Объектноориентированное программирование: Учебник для вузов. — 2-е изд., перераб. и доп./Под. Ред.Г.С.Ивановой. — М.: Издательство МГТУ им. Н.Э Баумана, 2003. — 368 с.
- 4. Орлов С.А. Технологии разработки программного обеспечения: Учебник. СПб.: Питер, 2002 464 с.
- 5. Брауде Э. Технология разработки программного обеспечения. СПб.: Питер, 2004. 655с.

ОБРАЗЕЦ ТЕСТА

Вариант 1.

1

Среди векторов: $\vec{a}\{-3;-1;3\}$, $\vec{b}\{4;-2;-1\}$, $\vec{c}\{1;0;1\}$ и $\vec{d}\{0;-1;1\}$, укажите те, которые взаимно перпендикулярны друг другу:

- 1. \vec{a} \vec{b} ;
- 2. \vec{a} и \vec{c} ;
- 3. $|\vec{c}$ и \vec{b} ;
- 4. $|\vec{c}$ и \vec{d} ;
- \vec{b} и \vec{d} .

2

Определите угол α , на который повернуты оси координат, если формулы преобразования координат заданы следующими равенствами: $x = \frac{1}{2}x' - \frac{\sqrt{3}}{2}y'$

и
$$y = \frac{\sqrt{3}}{2}x' + \frac{1}{2}y'$$
:

- 1. 60°;
- 2. 30°;
- 3. 45°;
- 4. 135°;
- 5. -60° .

3

Векторы: $\vec{a}\{-3;-1;3\}$, $\vec{b}\{4;-2;-1\}$ и $\vec{c}\{1;0;1\}$, заданные в прямоугольной декартовой системе координат, образуют линейно независимую систему векторов. Укажите координаты вектора $\vec{d}\{8;-5;4\}$, в системе координат, построенной на векторах \vec{a} , \vec{b} и \vec{c} :

- 1. $\{1; 2; 3\};$
- 2. {1; 0; 1};
- $\{-1;0;1\};$
- 4. {0;1;0};
- $5. \quad \{-1; -2; -3\}.$

4

Укажите координаты точки пересечения прямой: $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ и

плоскости хОу:

- 1. (1;2;3);
- 2. (1;1;1);
- 3. (-1;-1;-1);
- 4. (0;0;0);
- 5. (-1;-2;-3).

Две грани куба лежат на плоскостях: 2x-2y+z-1=0 и 2x-2y+z+5=0. Найдите объем этого куба (укажите правильный ответ):

- 1. 8;
- 10;
 9;
- 4. 16;
- 5. 25.

6

Среди указанных уравнений гипербол укажите то, что соответствует уравнению гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, а ее оси 2a = 10 и 2b = 8:

- 1. $\frac{x^2}{16} + \frac{y^2}{25} = -1;$
- $\frac{x^2}{16} \frac{y^2}{25} = 1;$
- 3. $10x^2 8y^2 = 1;$
- 4. $10x^2 8y^2 = -1;$
- $\frac{x^2}{25} \frac{y^2}{16} = 1.$

7

Известно, что плоскости: x+y+z-3=0, 2x-z-1=0 и 2y+z-3=0 имеют общую точку M . Укажите ее координаты:

- 1. M(1;1;1);
- 2. M(0;0;0);
- 3. M(-1;-1;-1);
- 4. M(1;0;1);
- 5. M(0;1;0).

8

Пусть дана матрица $A = \begin{pmatrix} -2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 2 & 3 \end{pmatrix}$. Ее определитель равен:

- 1. -2;
- 2. 2;
- 3. 4;
- 4. -8;
- 5. 0.

				(-2)	0	0)			(2	0	0)	
Пусть	даны	матрицы:	A =	1	2	1	И	B =	-1	-2	-1.	Их
				-1	2	3			1	-2	-3	

произведение равно:

$$\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix};$$

$$\begin{bmatrix}
-4 & 0 & 0 \\
1 & -6 & -5 \\
-1 & -10 & -11
\end{bmatrix};$$

$$\begin{bmatrix}
-4 & 0 & 0 \\
-1 & -4 & -1 \\
-1 & -4 & -9
\end{bmatrix};$$

$$\begin{pmatrix}
-4 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -9
\end{pmatrix};$$

$$\begin{array}{c|cccc}
5. & \begin{pmatrix}
-4 & -1 & -1 \\
0 & -4 & -4 \\
0 & -1 & -9
\end{pmatrix}$$

Пусть дана матрица
$$A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{pmatrix}$$
. Ее базисный минор:

1.
$$\Delta = \begin{vmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{vmatrix};$$

2.
$$\Delta = \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix};$$

Пусть	Пусть дана функция $y = \ln^2(\sqrt{x})$. Производная этой функции в точке $x = 1$				
равна	·				
1.	1;				
2.	e;				
3.	\sqrt{e} ;				
4.	0;				
5.	1				

 $\frac{1}{\sqrt{e}}$.

Пусть	Пусть дана функция $y = \frac{(x-2)(8-x)}{x^2}$. Она достигает экстремума в точке:				
1.	0;				
2.	16				
	$\frac{1}{5}$;				
3.	2;				
4.	3;				
5.	$\sqrt{2}$.				

Накло	Наклонная асимптота функции $y = \frac{x^2}{x+1}$ имеет вид:			
1.	y = x;			
2.	y=x-1;			
3.	y = -x + 1;			
4.	y = -x;			
5.	Функция наклонных асимптот не имеет.			

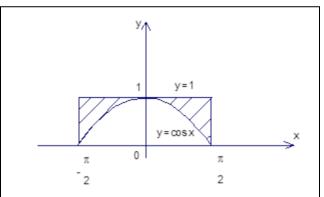
Уравн	нение касательной к графику функции $y = e^{-x^2}$ в точке $x = 0$ имеет вид:
1.	y = 2x + 1;
2.	y = -2x - 1;
3.	y = -x - 1;
4.	y = x + 1;
5.	y=1.

Неопределенный		интеграл	$\int xe^x dx$	может	быть	вычислен	методом
интег	рирования по	о частям и р	авен:				
1.	$(x-1)e^{x} + C$						

- $x^2e^x + C;$ 2.
- 3. $xe^x + C$;
- 4.
- $\frac{e^x + C;}{(x-1)^2 e^x + C.}$ 5.

16

Определенный интеграл $\int_{0}^{1} \frac{x}{x^4 + 1} dx$ равен:


- 1. 0;
- 2. 1;
- 3. $\frac{\pi}{8}$;
- 4. π ;
- 5. $\frac{\pi}{2}$.

17

Площадь фигуры, ограниченной

 $x = -\frac{\pi}{2} \quad \text{и} \quad x = \frac{\pi}{2} \quad \text{(см.)}$ линиями

рисунок) равна:

- π ; 1.
- $\pi-1$; 2.
- 3.
- $\pi-2$; 4.
- 5.

Несобственный интеграл первого рода $\int_0^{+\infty} \frac{dx}{x^2 + 1}$:				
1.	сходится и равен 0;			
2.	сходится и равен 1;			
3.	расходится;			
4.	сходится и равен π ;			
5.	сходится и равен $\frac{\pi}{2}$.			

Дана	Дана функция $y = \ln x$. Несобственный интеграл второго рода $\int_{0}^{1} \ln x dx$:				
1.	сходится и равен 0;				
2.	сходится и равен 1;				
3.	расходится;				
4.	сходится и равен -1 ;				
5.	сходится и равен $\frac{\pi}{2}$.				

Материальная точка M движется по координатной прямой под действием силы, величина которой меняется пропорционально расстоянию точки от начала координат O. Известно, что направление силы совпадает с направлением оси и что она равнялась 1H, когда расстояние OM было 2 м. Укажите, чему равна работа этой силы, если точка M была ею перемещена еще на 2 м от начала координат:

 1.
 2 м;

 2.
 4 м;

 3.
 6 м;

 4.
 8 м;

 5.
 другой ответ.

Частн	ая производная	первого	порядка	$\frac{\partial f(x,y)}{\partial x}$	функции
f(x, y)	$(y) = x^2 + xy + y^2$, вычис	ленная в точ	ке M(1;-1) ра	авна:	
1.	1;				
2.	2;				
3.	3;				
4.	4;	·		·	
5.	другой ответ.				

Функ	Функция $f(x, y) = x^2 + y^2$, имеет экстремум в точке:		
1.	M(1;1);		
2.	M(0;0);		
3.	M(1;0);		
4.	M(0;1);		
5.	другой ответ.		

Дифференциал первого порядка функции $f(x,y) = x^2 - y^2$ имеет вид:		
1.	df(x,y) = xdx - ydy;	
2.	df(x,y) = xdx;	
3.	df(x,y) = ydy;	
4.	df(x,y) = 2xdx + 2ydy;	
5.	df(x,y) = 2xdx - 2ydy.	

Данч	нисловой ряд: $\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} + \dots$ Сумма всех его элементов
равна	
1.	1;
2.	2;
3.	3;
4.	10;
5.	11.

Какая	из заданных функций является решением задачи Коши: $y' = \frac{y}{x}$,
y(2) =	
1.	y = x + 2;
2.	y = x + C где C – постоянная интегрирования;
3.	y = x;
4.	y=2x;
5.	y = Cx, $C = const$.

Досту	Доступность информации означает:		
1.	важность для настоящего времени;		
2.	независимость от чьего-либо мнения;		
3.	удобство формы или объема;		
4.	возможность ее получения данным потребителем;		
5.	достаточность для решения поставленной задачи.		

Защищенность информации означает:		
1.	невозможность несанкционированного использования или изменения;	
2.	независимость от чьего-либо мнения;	
3.	удобство формы или объема;	
4.	возможность ее получения данным потребителем;	
5.	достаточность для решения поставленной задачи.	

При у	При угадывании целого числа в диапазоне от 1 до N было получено 7 бит			
инфор	информации. Тогда N равно:			
1.	128;			
2.	16;			
3.	7;			
4.	32;			
5.	64.			

Сообщение о том, что ваш друг живет на 10 этаже, несет 4 бита информации.			
Тогда	Тогда число этажей в доме равно:		
1.	10;		
2.	12;		
3.	16;		
4.	20;		
5.	24.		

Сообі	Сообщение, записанное буквами из 32-символьного алфавита, содержит 30		
симво	символов. Тогда объем информации, который несет это сообщение равно:		
1.	960 байт;		
2.	150 байт;		
3.	720 байт;		
4.	1,5 Кбайт;		
5.	1024 байта.		

 Если перевести число 37, записанное в восьмеричной системе счисления в десятичную систему счисления, то оно будет иметь следующую запись:

 1.
 52;

 2.
 13;

 3.
 31;

 4.
 12;

 5.
 73.

Вся	информация	может	обрабатываться	компьютером,	если	она
предс	ставлена:					
1.	в двоичной зн	аковой с	истеме;			
2.	в десятичной	знаковой	системе;			
3.	в виде символ	ов и чисе	ел;			
4.	только в виде	символог	в латинского алфан	вита;		
5.	другой ответ.					

Прогр	Программа – это:				
1.	информация, которая обрабатывается компьютером в двоичном				
	компьютерном коде;				
2.	последовательность команд, которую выполняет компьютер в				
	процессе обработки данных;				
3.	числовая и текстовая информация;				
4.	последовательность символов латинского алфавита;				
5.	звуковая и графическая информация.				

Количество битов, воспринимаемое микропроцессором как единое целое –		
это:		
1.	разрядность процессора;	
2.	тактовая частота;	
3.	объем оперативной памяти компьютера;	
4.	производительность компьютера;	
5.	объем долговременной памяти компьютера.	

36	36			
_	Устройство, способное считывать графическую информацию и переводить ее			
в цифровую форму – это:				
1.	монитор;			
2.	сканер;			
3.	мышь;			
4.	модем;			
5.	принтер.			
37				
К про	граммам специального назначения не относятся:			
1.	бухгалтерские программы;			
2.	экспертные системы;			
3.	системы автоматизированного проектирования;			
4.	антивирусные программы;			
5.	текстовые редакторы.			
38				
Панел	вы задач OS Windows служит для:			
1.	переключения между запущенными приложениями;			
2.	завершения работы Windows;			
3.	обмена данными между приложениями;			
4.	просмотра каталогов;			
5.	другой ответ.			
39				
Устро	ойство с логическим именем А: называется:			
1.	гибкий диск (дискета);			
2.	винчестер;			
3.	папка Мой компьютер;			
4.	папка Корзина;			
5.	компакт-диск.			
40				
Файл рисунок.bmp находится в папке САУ, которая вложена в папку Мои				
рисунки на диске С:. Назовите путь к файлу:				
1.	С:\Мои рисунки\САУ\рисунок.bmp;			
2.	Мои рисунки\CAУ\рисунок.bmp;			
3.	папка Мой компьютер;			
4.	С:\Мои рисунки\САУ\;			
5.	С:\САУ\Мои рисунки\рисунок.bmp.			

Файл рисунок.bmp находится в папке САУ, которая вложена в папку Мои рисунки на диске С:. Назовите расширение файла: 1. С:\Мои рисунки\САУ\рисунок.bmp; 2. Мои рисунки\САУ\рисунок.bmp; 3. bmp; 4. С:\Мои рисунки\САУ\; 5. рисунок. 42 Международный стандарт Unicode отводит на один символ: 1. 1 байт; 2. 2 байта; * 3. 256 байт;
 С:\Мои рисунки\САУ\рисунок.bmp; Мои рисунки\САУ\рисунок.bmp; bmp; С:\Мои рисунки\САУ\; рисунок. рисунок. Тоайт; 2 байта; 256 байт;
2. Мои рисунки\САУ\рисунок.bmp; 3. bmp; 4. C:\Мои рисунки\САУ\; 5. рисунок. 42 Международный стандарт Unicode отводит на один символ: 1. 1 байт; 2. 2 байта; 3. 256 байт;
 3. bmp; 4. C:\Мои рисунки\САУ\; 5. рисунок. 42 Международный стандарт Unicode отводит на один символ: 1. 1 байт; 2. 2 байта; * 3. 256 байт;
4. C:\Мои рисунки\САУ\; 5. рисунок. 42 Международный стандарт Unicode отводит на один символ: 1. 1 байт; 2. 2 байта; 3. 256 байт;
5. рисунок. 42 Международный стандарт Unicode отводит на один символ: 1. 1 байт; 2. 2 байта; 3. 256 байт;
42
Международный стандарт Unicode отводит на один символ: 1. 1 байт; 2. 2 байта; 3. 256 байт;
1. 1 байт; 2. 2 байта; 3. 256 байт;
2. 2 байта; * 3. 256 байт;
3. 256 байт;
4. 1024 байта;
5. 65536 байт.
43
Какие команды заносят фрагмент текста в буфер?
1. вырезать, копировать;
2. вырезать;
3. копировать;
4. вставить;
5. удалить.
44
К операциям форматирования абзаца относятся:
1. выравнивание, межстрочный интервал, задание отступа;
2. начертание, размер, цвет, тип шрифта;
3. удаление символов;
4. копирование фрагментов текста;
5. другой ответ.
45
Шрифт без засечек называется:
1. рубленый;
2. пропорциональный;
3. моноширинный;
4. растровый;
5. векторный.

В как	В каком шрифте используется способ задания конфигурации символов с				
помог	цью векторов?				
1.	в рубленном;				
2.	в пропорциональном;				
3.	в моноширинном;				
4.	в растровом;				
5.	в векторном.				

Для ф	Для форматирования абзаца нужно выбрать команду:		
1.	Формат – Абзац;		
2.	Формат – Шрифт;		
3.	Вставка – Символ;		
4.	Вид – Разметка страницы;		
5.	Файл – Параметры страницы		

Элект	ронная таблица – это:				
1.	приложение, хранящее и обрабатывающее данные в прямоугольных				
	таблицах и предназначенное для автоматизации расчетов;				
2.	программные средства, осуществляющие поиск информации;				
3.	приложение, предназначенное для сбора, хранения, обработки и				
	передачи информации;				
4.	приложение, предназначенное для набора и печати таблиц;				
5.	другой ответ.				

77						
Дана табли	іца:					
	Фамилия имя	Математика	Физика	Сочинение	Сумма баллов	Средний балл
	1	2	3	4	5	6
	Бобров Игорь	5	4	3	12	4,0
	Городилов	4	5	4	13	4,3
	Андрей					
	Лосева Ольга	4	5	4	13	4,3
	Орехова	3	5	5	13	4,3
	Татьяна					
	Орлова Анна	3	2	0	5	1,7

Определите, какие столбцы будут вычисляемыми:

1.	2,	3	И	4;
----	----	---	---	----

- 1, 2, 3 и 4;
- 3. 5 и 6;
- 4. 3 и 4;
- 5. нет вычисляемых столбцов.

50

Элект	ронная таблица – это:		
1.	приложение, хранящее и обрабатывающее данные в прямоугольных		
	таблицах и предназначенное для автоматизации расчетов;		
2.	программные средства, осуществляющие поиск информации;		
3.	приложение, предназначенное для сбора, хранения, обработки и		
	передачи информации;		
4.	приложение, предназначенное для набора и печати таблиц;		
5.	другой ответ.		

Дано математическое выражение: $\frac{5x}{25(x+1)}$. Как запишется эта формула в			
электр	оонной таблице, если значение x хранится в ячейке $A1$?		
1.	=5A1/(25*(A1+1));		
2.	=5*A1/(25*A1+1);		
3.	=5*A1/(25*(A1+1));		
4.	=(5*A1)/25*(A1+1);		
5.	другой ответ.		

Дана	формула = B1/C1*C2 . Ей соответствует математическое выражение:
1.	<i>B</i> 1 .
	$\overline{C1 \cdot C2}$
2.	$B1 \cdot C2$.
	$\overline{C1}$,
3.	$B1 \cdot C1$.
	$\overline{C2}$,
4.	$\frac{B1}{C1}$: C2;
	$\overline{C1}^{\cdot,C2}$,
5.	другой ответ.

Элект	гронные таблицы MS Excel. В ячейки D5, D6, E5, E6 введены
соотве	етственно числа: 8, 3, 5, 2. В ячейке G3 введена формула
=CYN	ИМ(D5:E6). Какое число будет в ячейке G3?
1.	16;
2.	4;
3.	24;
4.	18;
5.	другой ответ.

Элект	тронные таблицы MS Excel. В ячейки C4, C5, D4, D5 введены				
соотв	соответственно числа: 5, 3, 4, 8. В ячейке Е9 введена формула				
=CP3	НАЧ(C4:D5). Какое число будет в ячейке E9?				
1.	20;				
2.	5;				
3.	13;				
4.	4;				
5.	другой ответ.				

33					
Логич	Логические функции табличных процессоров используются для:				
1.	построения логических выражений;				
2.	определения размера ежемесячных выплат для погашения кредита,				
	расчета амортизационных отчислений;				
3.	исчисления логарифмов, тригонометрических функций;				
4.	вычисления среднего значения, минимума, максимума;				
5.	другой ответ.				

Функ	Функции в электронной таблице представляют собой:			
1.	программы с уникальным именем, для которой пользователь должен			
	задать конкретные значения аргументов;			
2.	объекты, предназначенные для выполнения математических операций;			
	не содержат алфавитных и специальных символов;			
3.	объекты, предназначенные для выполнения логических операций;			
4.	объекты, предназначенные для выполнения статистических операций;			
5.	другой ответ.			

Базы	данных – это:
1.	набор сведений, организованный по определенным правилам и
	представленный в виде, пригодном для обработки автоматическими
	средствами;
2.	программные средства, позволяющие организовывать информацию в
	виде таблиц;
3.	программные средства, осуществляющие поиск информации;
4.	программно-аппаратный комплекс, предназначенный для сбора,
	хранения, обработки и передачи информации;
5.	другой ответ.

Инфо	рмационная система – это:
1.	набор сведений, организованный по определенным правилам и
	представленный в виде, пригодном для обработки автоматическими средствами;
2.	программные средства, позволяющие организовывать информацию в виде таблиц;
3.	программные средства, осуществляющие поиск информации;
4.	программно-аппаратный комплекс, предназначенный для сбора, хранения, обработки и передачи информации;
5.	другой ответ.

База данных содержит информацию о студентах: фамилия, группа, балл за тест, балл за практическое задание, общее количество баллов. Какого типа должно быть поле общее количество баллов?

1. символьное;

1.	симьольное,
2.	логическое;
3.	числовое;
4.	любого типа;
5.	дата.

Реляционная база данных задана таблицей:

	Название	Категория	Кинотеатр	Начало сеанса
1	Буратино	х/ф	Рубин	14
2	Кортик	х/ф	Искра	12
3	Винни-Пух	м/ф	Экран	9
4	Дюймовочка	м/ф	Россия	10
5	Буратино	х/ф	Искра	14
6	Ну, погоди	м/ф	Экран	14
7	Два капитана	х/ф	Россия	16

Ключевыми полями для таблицы (допуская, что в кинотеатре один зал) являются:

1.	название + кинотеатр;
2.	кинотеатр + начало сеанса;
3.	название + начало сеанса;
4.	кинотеатр;

5. начало сеанса.

61

Вся и	Вся информация в базе данных хранится в виде:			
1.	таблиц;			
2.	запросов;			
3.	форм;			
4.	отчетов;			
5.	макросов.			

62

В какой последовательности расположатся записи в базе данных после сортировки по возрастанию в поле *Память*?

🔳 Таблица1 : таблица				
	Номер	Процессор	Память	Винчестер
	1	Pentium	16	1Г6
	2	Pentium II	32	5Г6
	3	Pentium III	64	10Г6
	4	486DX	8	500M6
•	(Счетчик)		0	

1.	Ι,	2,	3,	4;
•	-	_	_	4

- 2. 4, 3, 2, 1;
- 3. 4,1,2,3;
- 4. 2,3,4,1;
- 5. 1, 4, 2, 3.

База л	анных	залана	таблице	й.
Dasa A	(WIIIIDI/X	эидини	тиолицо	11.

	ФИО	пол	возраст	клуб	спорт
1	Панько Л.П.	жен	22	Спартак	футбол
2	Арбузов А.А.	муж	20	Динамо	лыжи
3	Жиганова П.Н.	жен	19	Ротор	футбол
4	Иванов О.Г.	муж	21	Звезда	лыжи
5	Седова О.Л.	жен	18	Спартак	биатлон
6	Багаева С.И.	жен	23	Звезда	лыжи

Какие записи будут выбраны по условию: спорт = «лыжи» И пол = «жен»?

- 1. 6;
- 2. 1, 2, 3, 5, 6;
- 3. 1, 3, 5, 6;
- 4. 2, 4, 6;
- 5. 2, 6.

64

Присо	Присоединение частицы НЕ к высказыванию – это:			
1.	дизъюнкция;			
2.	конъюнкция;			
3.	импликация;			
4.	эквивалентность;			
5.	инверсия.			

65

Операция дизъюнкция называется иначе:					
1.	логическое умножение;				
2.	логическое сложение;				
3.	логическое следование;				
4.	логическое равенство;				
5.	логическое отрицание.				

Экви	валентность – это:						
1.	соединение двух простых высказываний в одно составное с помощью						
	союза И;						
2.	соединение двух простых высказываний в одно составное с помощью						
	союза ИЛИ;						
3.	соединение двух высказываний в одно с помощью оборота речи «Если						
	, T0»;						
4.	соединение двух высказываний в одно с помощью оборота речи						
	«тогда и только тогда, когда»;						
5.	присоединение частицы НЕ к высказыванию.						

Соста	Составное высказывание, образованное с помощью операции импликации:					
1.	ложно тогда и только тогда, когда из истинной предпосылки следует					
	ложный вывод;					
2.	истинно тогда и только тогда, когда из истинной предпосылки следует					
	ложный вывод;					
3.	истинно тогда и только тогда, когда оба высказывания одновременно					
	либо ложны, либо истинны;					
4.	истинно, когда хотя бы одно высказывание истинно;					
5.	истинно тогда и только тогда, когда составляющие высказывания					
	одновременно истинны.					

Какой	і логической с	операции соот	гветствует таб	блица истинности?	
	A	В	A?B		
	0	0	0		
	0	1	0		
	1	0	0		
	1	1	1		
				•	
1.	дизъюнкция	•			
2.	конъюнкция	•			
3.	эквивалентность;				
4.	инверсия:				

5.

импликация.

Даны выск	азывания:			
A - «	\mathbf{A} – «Петя едет в автобусе»			
B – <	В – «Петя читает книгу»			
С – «Петя насвистывает»				
Какое высказывание соответствует логическому выражению $A \& B \& \overline{C}$?				
1. Пет	Петя, не насвистывая, едет в автобусе и читает книгу;			
2. Пет	Петя, насвистывая, едет в автобусе или читает книгу;			
3. Пет	3. Петя едет в автобусе, читая книгу, или насвистывает;			
4. Пет	4. Петя едет в автобусе или, не насвистывая, читает книгу;			
5. Пет	я едет в автобусе или, насвистывая, не читает книгу.			
- 1101	22 eget 2 w2100 g e 12011, 1100 2110 1212 w.z., 110 1111 we 1 1111 11 g e			

Упрос	Упростить логическое выражение $(A \& B) \lor (A \& \overline{B})$.			
1.	\overline{A} ;			
2.	\overline{B} ;			
3.	B;			
4.	A;			
5.	другой ответ.			

Отриі	Отрицанием высказывания $\overline{A} \& B \lor C$ будет высказывание:				
1.	$A \vee \overline{B} \vee \overline{C}$;				
2.	$\overline{A} \& \overline{C} \lor \overline{B} \& C$;				
3.	$\overline{B} \& C \lor \overline{A} \& C$;				
4.	$A \& \overline{C} \lor \overline{B} \& \overline{C}$;				
5.	другой ответ.				

Выберите равенства, относящиеся к сочетательному закону:				
1.	$A \vee B = B \vee A$;			
2.	A & B = B & A;			
3.	$(A \vee B) \vee C = A \vee (B \vee C);$			
4.	$(A \vee B) \& C = (A \& C) \vee (B \& C);$			
5.	$(A \& B) \lor C = (A \lor C) \& (B \lor C).$			

Задан	Задан адрес сервера Интернета: <u>www.mipkro.ru</u> . Каково имя домена верхнего				
уровня?					
1.	www.mipkro.ru;				
2.	mipkro.ru;				
3.	ru; *				
4.	www;				
5.	в записи адреса имя домена верхнего уровня не указано.				

Комп	Компьютер, находящийся в состоянии постоянного подключения к сети:				
1.	1. хост-компьютер (узел);				
2.	провайдер;				
3.	сервер;				
4.	4. домен;				
5.	другой ответ.				

Обраб	ботка г	чперссылок,	поиск	И	передача	документов	клиенту –	ЭТО
назнач	чение п	ротокола:						
1.	TCP;							
2.	IP;							
3.	HTTP;	,						
4.	WWW	7;						
5.	другой ответ.							

Кажд	Каждый отдельный документ, имеющий собственный адрес, называется:			
1.	Web-страницей;			
2.	Web-сервером;			
3.	Web-сайтом;			
4.	4. Web-браузером;			
5.	другой ответ.			

Web-o	Web-сайт – это:			
1.	совокупность взаимосвязанных страниц, принадлежащих какому-то			
	одному лицу или организации;			
2.	сеть документов, связанных между собой гиперссылками;			
3.	компьютер, на котором работает сервер-программа WWW;			
4.	отдельный файл, имя которого имеет расширение .htm или .html;			
5.	другой ответ.			

Web-6	Web-браузер – это:			
1.	совокупность взаимосвязанных страниц, принадлежащих какому-то			
	одному лицу или организации;			
2.	сеть документов, связанных между собой гиперссылками;			
3.	компьютер, на котором работает сервер-программа WWW;			
4.	клиент-программа WWW, обеспечивающая пользователю доступ к			
	информационным ресурсам Интернета;			
5.	другой ответ.			

B URI	B URL-адресе Web-страницы http://www.mipkro.ru/index.htm имя файла – это:		
1.	http;		
2.	www.mipkro.ru;		
3.	index.htm;		
4.	http://www.mipkro.ru/index.htm;		
5.	другой ответ.		

Проце	Процессор выполняет команды алгоритма, записанные		
1.	на алгоритмическом языке;		
2.	на командном языке;		
3.	в виде блок-схемы;		
4.	на естественном языке;		
5.	на машинном языке (в двоичном коде).		

Для п	Для представления алгоритма в графическом виде используют		
1.	геометрические фигуры;		
2.	линии, точки;		
3.	формулы;		
4.	все ответы правильные;		
5.	графики функции.		

Свойс	Свойство алгоритма «дискретность» означает:			
1.	предлагаемые действия должны быть понятными и единственно			
	возможными;			
2.	способность алгоритма давать правильные результаты решения задач;			
3.	пригодность алгоритма для решения однотипных задач;			
4.	решение задач должно быть получено за определенное число шагов;			
5.	непрерывность алгоритмического процесса.			

После	Последовательность нескольких команд алгоритма, выполняемых одна за					
друго	другой, называется					
1.	командой;					
2.	программа;					
3.	служебные слова;					
4.	серия;					
5.	система программ.					

Аргументами называются величины:		
1.	не являющиеся исходными данными для алгоритма;	
2.	являющиеся результатами для алгоритма;	
3.	используемые для обозначения;	
4.	являющиеся исходными данными для алгоритма;	
5.	являющиеся заголовком для алгоритма.	

Алгор	оитмы,	целиком	используемые	В	составе	других	алгоритмов,
назыв	аются	. •					
1.	линей	ными;					
2.	опреде	еленными;					
3.	развет	вляющими	ся;				
4.	вспомо	огательным	и;				
5.	циклическими.						

Как н	Как называется процесс преобразования кода программы в машинный код?			
1.	трансляция;			
2.	отладка;			
3.	тестирование;			
4.	компиляция;			
5.	компоновка.			

 есть виртуальный конструктор; есть виртуальный деструктор; есть хотя бы один виртуальный метод; присутствуют оба виртуальные конструктор и деструктор; другой ответ. 	Для ср	Для среды языка С++ абстрактный класс – это класс, в котором:		
3. есть хотя бы один виртуальный метод;4. присутствуют оба виртуальные конструктор и деструктор;	1.	есть виртуальный конструктор;		
4. присутствуют оба виртуальные конструктор и деструктор;	2.	есть виртуальный деструктор;		
	3.	есть хотя бы один виртуальный метод;		
5. другой ответ.	4.	присутствуют оба виртуальные конструктор и деструктор;		
1 1 3	5.	другой ответ.		

Если	Если в главном меню программы напротив команды стоит троеточие (), это			
означа	означает, что:			
1.	команда недоступна;			
2.	при выборе этой команды откроется окно, в котором необходимо			
	указать необходимые этой команде параметры;			
3.	команда сработает только с третьего раза;			
4.	компьютер заменил на троеточие нелитературное слово;			
5.	другой ответ.			

Для того чтобы переменная считалась глобальной:			
1.	достаточно прописать к ней переменную указатель логотипа;		
2.	ее нужно описать за пределами главной функции main();		
3.	ее нужно описать внутри функции main();		
4.	необходимо сослаться на нее по адресу в памяти;		
5.	другой ответ.		

91

```
Ошибка в ниже следующем коде:
      int count; //строка 1
      int hours [count]; //строка 2
      for (count = 1; count \leq 6; count ++) //cTpoka 3
      { cin >> hours[count];} //строка 4
сокрыта в строке:
       4;
1.
       3;
2.
3.
       2;
4.
       1;
5.
       нет ошибок.
```

92

Недос	Недостаток компилятора С++ (и С) при работе с массивами заключается:				
1.	в распределении многомерных массивов в оперативной памяти				
	построчно;				
2.	в реализации адресации элементов массива при обращении к ним;				
3.	в неумении обнаруживать ошибки выхода за пределы массива;				
4.	в реализации обращения к массиву по ссылке;				
5.	другой ответ.				

Проин	Проинициализированные переменные int a=7 и int b=4 поделили одну на			
другу	другую (a/b). Укажите полученный результат:			
1.	2;			
2.	1;			
3.	0.75;			
4.	1.75;			
5.	другой ответ.			

Среді	Среди ниже перечисленных укажите ключевые слова С и С++ обозначающие					
динам	динамическое распределение памяти:					
1.	break;					
2.	delete;					
3.	for;					
4.	return;					
5.	среди	перечисленных	слов	нет	обозначающих	динамическое
	распред	деление памяти.				

Укаж	Укажите, что является идентификатором языка С++:		
1.	Lab 1;		
2.	Товар;		
3.	_time;		
4.	a+b;		
5.	C++.		

Укаж	Укажите обозначение логической операции «И» в языке C++:		
1.	and;		
2.	&;		
3.	!&;		
4.	&&;		
5.			

<u> </u>				
Как б	Как будет выполняться в языке C++ программа, если в переключателе switch			
не ист	не используется оператор break:			
1.	при совпадении ключевого выражения с меткой выполняется			
	соответствующий оператор и управление передается в конец			
	переключателя;			
2.	компилятор обнаружит синтаксическую ошибку;			
3.	при совпадении ключевого выражения с меткой выполняется			
	соответствующий оператор и управление передается на следующую			
	ветвь саѕе;			
4.	при совпадении ключевого выражения с меткой выполняется			
	соответствующий оператор и управление передается на следующую			
	ветвь default;			
5.	другой ответ.			

Переменная типа boolean может принимать значения:		
1.	0, 1;	
2.	true, false;	
3.	1,-1;	
4.	-1, 0 1;	
5.	другой ответ.	

Графи	Графическое представление алгоритма в виде последовательности связанных		
между собой функциональных блоков называется:			
1.	блочной схемой;		
2.	графиком;		
3.	блок – схемой;		
4.	диаграммой;		
5.	лругой ответ.		

Масси	Массив – это:			
1.	группа элементов одного типа с одним именем;			
2.	группа элементов одного типа с разными именами;			
3.	все данные программы одного типа;			
4.	группа элементов разного типа с одним именем;			
5.	другой ответ.			

Перем	Переменная – это:		
1.	название одной ячейки памяти;		
2.	именованная область памяти;		
3.	выражение, которое постоянно меняется;		
4.	неизвестная величина;		
5.	другой ответ.		

Перем	Переменная – это:		
1.	название одной ячейки памяти;		
2.	именованная область памяти;		
3.	выражение, которое постоянно меняется;		
4.	неизвестная величина;		
5.	другой ответ.		